
Robot League
Team: sdmay22-26

Client: Dr. Rover

Adviser: Christopher Pedersen

Team Members:

Cheyenne Smith - Team Organizer
Brogden Worcester - Client Interaction

Jordan Suby - Individual Component Design
Noah Brooks - Team Leader Hardware

Joseph Holtkmap - Team Leader Software
Dalton Holdredge - Document Submitter/Creator

David Quan - Progress Coordinator
Tejas Agarwal - Finance Officer

sdmay22-26@iastate.edu

https://sdmay22-26.sd.ece.iastate.edu/

Revised: December 05, 2021

0

Executive Summary
Development Standards & Practices Used
SOFTWARE DEVELOPMENT PRACTICES

● Agile/Waterfall project management process
● Good code formatting and documentation

ENGINEERING STANDARDS

● Unit testing
● Integration testing
● Acceptance testing
● Hardware I/O testing
● Documentation of design decisions, including UI and architecture
● Documentation technologies and rationale behind them
● IEEE Standards

Summary of Requirements

● Robot cars are controlled over WiFi to play a game of soccer
● The bots can use machine learning to play the game
● Game play can be user vs. user, user vs. CPU, or CPU vs CPU
● Game can be built/collapsed with minimal difficulty with provided instructions
● Game can be stored in a standard vehicle trunk, and carried by one average

person

Applicable Courses from Iowa State University Curriculum
● CPR E 288
● E E 185
● E E 201
● E E 230
● E E 425

● E E 466
● CPR E 329
● CPR E 430
● COM S 106
● COM S 309

● S E 319
● S E 329
● S E 339

New Skills/Knowledge acquired that was not taught in courses
● Embedded machine learning training/implementation
● Embedded system design
● Raspberry Pi development
● Application development with Flutter
● Video streaming technologies
● Better understanding of software development practices

1

Table of Contents
Team 5

Introduction 7

3 Project Plan 9

3.1 Project Management/Tracking Procedures 9

3.2 Task Decomposition 9

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 11

3.4 Project Timeline/Schedule 12

3.4.1 Requirements and Constraints 12

3.4.2 Learning and Infrastructure 12

3.4.3 Create Design Document 13

3.4.4 Develop Machine Learning to Detect Objects 13

3.4.6 Create Final Robot Prototype 13

3.4.7 Create Game Arena 13

3.4.8 Create Baseline Application Frontend 13

3.4.9 Create Baseline Application Frontend 13

3.4.10 Application Development: Semester 1 14

3.4.11 Create Database on ISU Server 14

3.4.12 Create socket server on ISU Server 14

3.4.13 Structure out UI 14

3.4.14 Create endpoints and connect devices in server 14

3.4.15 UI/UX Development on Application 14

3.4.16 Refactoring and adding functionality to socket server 14

3.4.17 Controls between robot and application 14

3.5 Risks And Risk Management/Mitigation 14

3.6 Personnel Effort Requirements 17

3.7 Other Resource Requirements 19

4 Design 20

4.1 Design Context 20

2

4.1.1 Broader Context 20

4.1.2 User Needs 21

4.1.3 Prior Work/Solutions 21

4.1.4 Technical Complexity 22

4.2 Design Exploration 23

4.2.1 Design Decisions 23

4.2.2 Ideation 24

4.2.3 Decision-Making and Trade-Off 24

Proposed Design 25

4.3.1 Design Visual and Description 26

4.3.2 Functionality 33

4.3.3 Areas of Concern and Development 33

4.4 Technology Considerations 33

4.5 Design Analysis 34

Design Plan 35

5 Testing 36

5.1 Unit Testing 36

5.2 Interface Testing 36

Integration Testing 37

System Testing 37

Regression Testing 37

Acceptance Testing 38

Results 38

6 Implementation 40

7 Professionalism 41

Areas of Responsibility 41

7.2 Project Specific Professional Responsibility Areas 42

7.3 Most Applicable Professional Responsibility Area 43

8 Closing Material 44

3

8.1 Discussion 44

8.2 Conclusion 44

8.3 References 46

8.4 Appendices 47

8.4.1 Team Contract 48

4

1 Team

1.1 TEAM MEMBERS

Joseph Holtkamp

Noah Brooks

Dalton Holdredge

David Quan

Brogden Worcester

Cheyenne Smith

Tejas Agarwal

Jordan Suby

1.2 REQUIRED SKILL SETS FOR OUR PROJECT

Application development, machine learning, project management, raspberry pi development, python,
robotics, circuit design, UI/UX, backend/networking development.

1.3 SKILL SETS COVERED BY THE TEAM

Application development Joseph Holtkamp

Machine learning development/implementation Dalton Holdredge

Raspberry Pi development Cheyenne Smith, Dalton Holdredge, Tejas
Agarwal, Brogden Worcester

Python Joseph Holtkamp, Brogden Worcester, Cheyenne
Smith

Robotics Dalton Holdredge, Noah Brooks

Circuit design Dalton Holdredge, Noah Brooks

Project management Joseph Holtkamp

UI/UX David Quan, Jordan Suby, Joseph Holtkamp

Backend/networking development David Quan, Jordan Suby, Cheyenne Smith

5

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Our project management style is a hybrid of agile and waterfall.

1.5 INITIAL PROJECT MANAGEMENT ROLES

Team organizer: Cheyenne Smith
Client interaction - Brogden Worcester
Individual component design - Jordan Suby
Team leader hardware - Noah Brooks
Team leader software - Joseph Holtkamp
Document submitter/creator - Dalton Holdredge
Progress coordinator: David Quan
Finance officer: Tejas Agarwal

6

2 Introduction

2.1 PROBLEM STATEMENT

Our team will create two robots to compete in a soccer inspired competition. They will be controlled by an
application that communicates with the Raspberry Pi microprocessor on the robots. The game will be able
to support human vs human, CPU vs CPU, and human vs CPU competition where the robots compete
autonomously via machine learning.

2.2 REQUIREMENTS & CONSTRAINTS

Functional Requirements:

● The bots can use machine learning to play the game
● Uses Websocket/handshake protocol over wifi
● Uses camera feed to provide information to the bots
● The bots must be robust enough in case they collide with each other
● The bots will be able to shoot a ball into a goal
● Bots are light enough to carry around
● The arena and robots can be collapsed into a size small enough to fit into a standard

vehicle trunk

Resource Requirements:

● 2 geared DC motors per bot (for a total of 4)
● 3 microcontrollers: 2 Raspberry Pi 3b+ and 1 Raspberry Pi 4B
● Jumpers and wires for connecting the hardware
● Chassis for the bots, most likely an acrylic laser cut one
● Tools for machining the chassis
● Power supplies for each bot, and power supply for the arena camera (for a total of 3)
● 2 cameras (one camera each) for the robots to have first person view within the

application, and 2 cameras above to utilize for object detection. Each camera will require
at least 8MP resolution.

Application

● Cross-platform compatibility
● Low latency video streaming (MJPEG format)
● Socket server backend
● Database for user profiles and game statistics
● Server from ISU for hosting socket server and database

7

Movement/Aesthetics Requirements:

● Bots can travel at a minimum speed of 3 mph and maximum speed of 5 mph (constraint)
● 0 inch turning radius (constraint)
● Bots look aesthetically pleasing as determined by surveying volunteer users

Economic/Market Requirements:

● Cost: $600 budget for entire project (constraint)

Environmental Requirements:

● N/A

UI Requirements:

● Easy to understand and navigate
● Ability to set up profiles and track statistics
● Ability to access all streams from the bots and arena regardless of play status.

Other Requirements:

● Database for storing profile information of users

2.3 ENGINEERING STANDARDS

7007-2021 Ontological Standard for Ethically Driven Robotics and Automation Systems: Our bots will
have both an autonomous feature and a user driven code. This code needs to follow the guidelines of being
able to provide clear and precise communication between the bots' different systems and/or the user.

802.11 wifi standard: Our bots will be communicating over a wifi signal.

2.4 INTENDED USERS AND USES

We benefit in learning different skills and new languages along the way for this project as something we
can take to employers. Also, benefits others in the robotics fields to provide an example of what could be
taught to future students. As well as, people who enjoy playing with RC cars or robots and want a fun little
game to play.

8

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our project management style is a hybrid of agile and waterfall. We have adapted an agile-like
task breakdown and story board to keep track of what stage each task is in and who is working on it. We do
not yet have a daily standup although it may become necessary as we transition into the more
implementation focused phase of our project. Due to the short timeframe of our project, the idea of success
by incremental, continuous improvement will not cut it. To accommodate our limited time to implement the
project, we have organized the implementation of our project in a waterfall model. The combination of
these styles offers us a structure for success in our time frame, with weekly “sprints” and agile-like task
decomposition.

For version control, we are using Git. Our repository is hosted on Gitlab as was provided to us for
this course. For communication and collaboration, our team utilizes Discord. Our communication with
Dr.Rover is carried out via Slack primarily. Lastly, Jira is where our tasks, stories, and epics are tracked.

3.2 TASK DECOMPOSITION

Application Development:

Our team decomposes tasks as they come. When we add a new task to the storyboard, it is looked
at what incremental steps are required for it to be completed. If those subtasks are important, they are
documented within the story card. If they are significant enough in effort required, they become a card of
their own and the tasks are linked as dependent. Jira provides great support for task breakdown and linking.
We organize tasks into which Epic (or phase in our gantt chart) that they best fit in. If tasks are related in
separate Epics, we use label tags to indicate their relationship.

Hardware:

Task Group 1: Machine Learning

● Develop the ML model for detecting the robots and the game ball

○ Using transfer learning to modify a pre-trained model with our dataset to fit our needs

■ collect dataset to train model

● collect photos of the shape markers that will be on the robots, as well as
the ball

● classify the shapes in every single image

■ Split the dataset into train/test/validation sections

■ Upload dataset to Google Cloud Vision API

■ Train model using Google’s server

■ Download the custom AutoML Vision Edge model in TensorFlow Lite format

■ Deploy the ML model on Raspberry Pi

● Create algorithm for teaching the bot to decide whether to be on offense or defense

9

○ Using the ML model, the coordinates of the robots and the ball will be used to determine,
based on their relative positions with respect to the goals, whether the robot should try to
hit the ball into the other goal or defend its own goal

● Create algorithm for steering the ball into the goal

● Create algorithm for teaching the bot to defend its goal

Task Group 2: Robot Prototype

● Decide what materials to use for constructing the chassis

○ Find out if we can find a 3D printer we can access

● Decide which model of Raspberry Pi to use

● Decide how much speed, torque, and current, and space is necessary for our application

○ Acquire motors, cameras, wheels, and motor drivers

● Decide how much durability the robots will require

● Construct robot chassis and assemble the bot

● Test the design for robustness and durability

Task Group 3: Frontend Application / UI

● Choose a framework to enable cross-platform development with a low barrier to entry for
developers (Flutter)

● Team members focused on frontend development will learn the framework and tools necessary to
be productive

● Design the UI/views

○ Home View describes bots in use and navigation

○ Control view video stream from bots and control interface

○ Game setup and training view

○ Player profile view

○ Statistics of profile view

○ Live game feed for non-participating viewers

● Implement UI

● Distribute application

Task Group 4: Backend Application / Server

● Create user profiles

● Implement TCP/Socket connections to UI

● Implement TCP/Socket connection to robots

● Implement RESTful API connection to database

10

● Stream video and sensor data between bot and application

● Research hosting services. Select the best one for our needs

Task Group 5: Database / Sensors

● Research and decide between SQL and NoSQL databases

● Design tables for user profiles and game results

● Create tables

● Write code for sensors on the bots, such as bump sensors

○ Decide what the penalties for bumping the other bot will be

● Add sensors to the robots

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

How we will determine progress on a given task:

We will split jiras into different categories: Large tasks, quantifiable tasks, and incomplete/complete tasks.

Large tasks will be split into smaller jiras and we can see progress as smaller jiras get completed.

Quantifiable tasks are tasks like improving the object detection machine learning model to attain
75% precision with IoU threshold of 0.5 for ball recognition. We will be able to see how much it has
improved and by how much. For example, if we are able to attain 50% precision with IoU threshold of 0.5
for ball recognition, and the requirement was for 75% precision, then we would be 66.6% of the way
complete with this task. These tasks will slowly improve as more work is completed and will be given a
progress number (60% complete, 80% complete, etc.)

Incomplete/complete tasks are tasks that are binary - either they are complete or not. Such as, if
we were making profiles for users the individual will talk about progress in developing those and we will
mark them complete once it’s all complete.

Key Milestones:

● Create a single prototype for our robot league robots
● Interface with our prototype over WiFi to be able to send and receive data
● Create embedded machine learning algorithm to recognize the ball at 75% precision with IoU

threshold of 0.5, with a maximum of 250 milliseconds for each detection
● Create a second prototype for robot that can move more quickly, has all of the hardware

components encased, is smaller, and has rechargeable batteries.
● Create the arena prototype
● Write python function for automatically recognizing when a team has made a goal based on the

visual information from the camera, within 1 second with 95% accuracy
● Create a connection with the bots and retain connection 100% of the time
● Have the bots last 60 minutes of play time
● Write python function to allow the robots to autonomously play the game

11

Software Milestones:

● Create application interface
● Create socket server for communication between robots and application
● Display video from robot in app
● Stream controls from app to robot
● Create database structure to represent users and game statistics
● Video and controls must have low latency

3.4 PROJECT TIMELINE/SCHEDULE

3.4.1 REQUIREMENTS AND CONSTRAINTS

The first task outlined in our Gantt chart is the Requirements and Constraints. This section is
where we define the project requirements and constraints within which we must operate. This task was
scheduled to be completed in early October, as these requirements determined the scope of the rest of the
project.

3.4.2 LEARNING AND INFRASTRUCTURE

The second task group is Learning and Infrastructure, which is mainly the research into the various
components for our design. We had to research and make decisions such as what materials to use for the
robot chassis, find what resources were available for us on campus to construct the project, and research
how to stream our video feed over a websocket connection. This was scheduled to be completed at the end
of November.

12

3.4.3 CREATE DESIGN DOCUMENT

Creating the Design Document is the next item on our Gantt chart, and its completion is based
upon the first cohesive draft of the design document being complete. We set the deadline for the rough draft
in the beginning of December. We will be updating this document throughout the year into the Spring
semester, so this is an ongoing process after the draft is completed.

3.4.4 DEVELOP MACHINE LEARNING TO DETECT OBJECTS

The next item on the Gantt chart is Developing Machine Learning to Detect Objects. In order to
accomplish this, we had to train a machine learning model to recognize the robots and the game ball.
3.4.5 DRIVING AUTONOMOUSLY

The next item on the Gantt chart would be to utilize object detection to aid in an autonomous
driving or mode so that a person could play against a robot. The machine learning object detection model
provides the locations of the robots with respect to the game ball, which are inputs into the python function
that allows the robot to drive autonomously to get the ball into the other team’s goal.

3.4.6 CREATE FINAL ROBOT PROTOTYPE

The next item on the Gantt chart is the process of creating the final robot prototype. The finished
product will be a functional car that is able to drive either via user control over a websocket connection
from the application, or autonomously utilizing the custom machine learning object detection model.

3.4.7 CREATE GAME ARENA

The final task for physical deliverables is to create the game arena within which the game will be
played. This involves picking dimensions that will work with the arena camera (narrow enough so the
entire field is in the camera’s field of view, yet wide enough to allow for adequate space for playing, etc.).

3.4.8 CREATE BASELINE APPLICATION FRONTEND

This epic was centered around creating the skeleton of our application. It involved creating the
flutter app, adding pages we will most likely use, and then routing between them. This was mostly a
research and development based set of tasks designed to get us familiarized with the Flutter framework and
using Dart. We also completed a basic stream of MJPEG content that was used as proof of concept that we
could stream live video to our app.

3.4.9 CREATE BASELINE APPLICATION FRONTEND

These tasks are for creation of the application that will interface with the robots and arena
camera to facilitate the playing of the game. Tasks for this portion included items such as creating
the empty application, configuring the endpoint for streaming video, displaying video feed within
the application, and learning how to use Flutter.

3.4.10 APPLICATION DEVELOPMENT: SEMESTER 1

This epic is centered around creating a working application for semester 1 and how much
progress we’ve made so far. Most of this was centered around having the bones of the project
working so that we knew where screens went and what API calls to make.

13

3.4.11 CREATE DATABASE ON ISU SERVER

During this time, our team will set up an SQL database on our ISU server. It will consist of
creating the database, creating a database schema to represent our data, and implementing the
schema. After which, the connection details will be documented and handed off to the teammates
implementing our backend/socket server.

3.4.12 CREATE SOCKET SERVER ON ISU SERVER

This task is centered around creating a socket where data can be sent and received using a
TCP connection protocol. This would involve testing our bots communication between the server
and the web application.

3.4.13 STRUCTURE OUT UI

This task revolves using Figma to create screens to structure how our UI will look in the
future. This includes learning Figma and creating example screens. We would also have to decide on
how our UI would look together and how you would transition from one to another.

3.4.14 CREATE ENDPOINTS AND CONNECT DEVICES IN SERVER

This task involves creating APi endpoints and connecting them to the server. This would
mainly be after creating the database then seeing if info can be sent and received to the database.
We would also create endpoints for other things like having the user see the viewpoint of the bot.

3.4.15 UI/UX DEVELOPMENT ON APPLICATION

This would involve actually creating the screens that we structured out in Figma. We would
then like to replicate these screens for actual use.

3.4.16 REFACTORING AND ADDING FUNCTIONALITY TO SOCKET SERVER

This task involves actually getting the data from our socket that we established. With this,
we can finally start talking to the robot and get data points from the bot. This can be information
about where the ball is or video from the camera feed.

3.4.17 CONTROLS BETWEEN ROBOT AND APPLICATION

This task involves sending information to the bot to control the movement. This would
involve creating a screen and having the bot respond in an appropriate amount of time to the
command from our web application.

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

This section outlines the risk of each sprint that the team came up with during the strategizing
phase of the project. With respect to the requirements and constraints task. The risk that we assume is that
we might have applied unrealistic constraints to the project that we are not yet aware of. To mitigate this
risk, thorough research is put into each design element such as the bot’s material composition, the user
application framework, and the motor for the bot. Another prevalent risk that the team faces is the

14

development of the machine learning model (ML). With respect to the ML sprint, we face two distinct
risks:

The live stream and the data captured by the arena camera can not be accessed in a way that
allows for the use of that data for automation and furthering the ML model. We will be reducing the
probability of this risk by training the model early. This will allow for the determination of the issues that
the current solution might present. The second risk we face is the limits of the hardware. The field of view
(FOV) of the arena cam could be too small for proper use. To mitigate this the cameras have been tested to
determine a suitable one. Another risk we face with the camera choice is that the resolution might be too
low to accurately detect the objects

The table below quantifies the risks associated with the project. For each risk, there is an estimated
probability of that risk occurring, ranging from 0 (not possible) to 1 (guaranteed to occur). The “Weight of
Risk Severity” is the relative impact to our success if this event occurs, ranging from 0 (negligible impact
on our success) to 10 (catastrophic impact to our success). The “Probability*Weight” column is a
representation of the combination of the probability and the risk severity. The higher the number for this
column, the more concerned we should be that this risk might occur.

Task Risk Probability
of Risk

Weight of
Risk

Severity

Probability
*Weight

Mitigation

Requirements
and
Constraints

Game requirements are not easily
feasible

0.25 4 1 Proper research
and early
prototyping

Learning and
Infrastructure

Many of us will be working with
tools we do not have prior
experience with and they may be
harder to pick up than we expect.

0.25 2 0.5 Ask for help from
qualified sources.

Create design
document

It does not get finished in time 0.1 10 1 We will start
working on it
early

Develop
machine
learning to
detect objects

We cannot access the camera to
live stream the data

We pick a ML model that takes up
too much time or data processing

Cameras do not have high enough

0.3

0.25

0.2

5

3

4

1.5

0.75

0.8

Start working on
camera in advance
so we can work
out any issues

Research existing
ML models and
decide on what
will work best for
us

Contrasting

15

resolution to accurately detect the
objects

distinguishing
marks on top of
the robots, as well
as a high-contrast
game ball

Drive
autonomously

We don’t have enough time to
train the ML model

0.5 3 1.5 Use online
resources such as
Google Cloud
Vision API or
Roboflow to train
the model

Create final
robot
prototype

We won’t have enough time to
create the prototype

The motors don’t have enough
torque or speed

The chassis is not strong enough

0.5

0.25

0.2

5

2

3

2.5
0.5
0.6

Early prototyping
now, and
deadlines to keep
us on track

Early prototyping

Prototype with
various materials

Create game
arena

The arena is too large to be
captured with the camera

Arena materials take up too much
space when they are stored

0.1

0.25

6

1

0.6

0.25

Check camera
field of vision
beforehand

We choose
materials with this
consideration in
mind

16

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Person-Hours
1 Requirements and Constraints 3
2 Learning and Infrastructure 41
2.1 Set up a Jira Board 1
2.2 Set up repository 1
2.3 Find 3D printers and technology for 3D printing designs 2
2.4 Research and decide on tech stack for application 4
2.5 Document why we chose Raspberry Pi 2
2.6 Figure out and document specific funding amounts 3
2.7 Meet with hive to discover available resources 1
2.8 Find what resources are available in Student Innovation Center 2
2.9 Research Unity 4
2.10 Password Generator 2
2.11 Define and document game and rules 8
2.12 Decide if we are using embedded machine learning or using a server 3
2.13 Research how to stream video over a websocket connection. (TCP Protocol) 8
2.14 Create CI/CD Pipeline for repository 3
2.15 Learn how to broadcast mjpeg and/or .cgi from camera over http protocol 5
3 Create Design Document 15
4 Develop Machine Learning to detect objects 96
4.1 Be able to access camera data over WiFi 16
4.2 Decide which trained model will be used for the “skeleton” for the ML model 16
4.3 Attain 75% precision with IoU threshold of 0.5 for ball recognition 32
4.4 Attain 75% precision with IoU threshold of 0.5 for robot shape recognition 32
5 Driving autonomously 36
5.1 Create python function for allowing the bot to “decide” to be defense or offense 12
5.2 Create python function for the bots to drive on offense autonomously 12
5.3 Create python function for the bots to drive on defense autonomously 12
6 Create final robot prototype 40
6.1 Decide what materials to use for design chassis 16
6.2 Acquire motors for final design 20
6.3 Decide for Raspberry Pi 3B+ or Raspberry Pi Zero W as computer 4
7 Create Game Arena 104
7.1 Logistics for game camera (resolution, FOV, USB or camera cable) 16
7.2 Decide if it will be an open goal, goal post, or something else 8
7.3 Decide what materials will be used to construct the arena 16
7.4 Build arena camera holder 32
7.5 Build arena 32
7.6 Calculate estimated cost for arena design 1
8. Create baseline application frontend 31
8.1 Create basic form in Flutter 2
8.2 Create empty application 1
8.3 Learn how to create Mjpeg elements in Flutter 6
8.4 Learn how to switch views between in Flutter 4
8.5 Retrieve data from an API in Flutter 2
8.6 Implement routing in our app 2
8.7 Configure endpoint for streaming video 2

17

8.8 Display video feed in application 4
8.9 Learn how to construct layout in Flutter and position widgets 6
8.10 Create Use Case diagram for application 2
9. Application Development: Semester One 21
10 Create Database on ISU Server 2
11 Create Socket Server on ISU Server 6
11.1 Create TCP connection between video and app 6
11.2 Allow streaming through TCP 7
12 Structure out UI 22
12.1 Navigate between screens 4
12.2 Player screen 5
12.3 Video screen 6
12.4 Home 2
12.5 Statistics 5
13 Create endpoints and connect devices in Server 6
14 UI/UX Development on App 9
15 Refactoring and adding functionality to Socket Server 8
16 Controls between Robot and App 12
Total person hours: 385

18

3.7 OTHER RESOURCE REQUIREMENTS

Hardware Team:

Part
No.

Description Quantity Rate Cost

1 Canvas 3 $ 1.49 $ 4.47

2 PVC Pipes 13 $ 4.41 $ 57.33

3 T Connectors 14 $ 0.39 $ 5.46

4 Elbow with Side Outlet 8 $ 1.49 $ 11.92

5 Cross 4 way connectors 2 $ 1.69 $ 3.38

6 4 way T connector 1 $ 12.29 $ 12.29

7 Elbow Connectors 4 $ 0.39 $ 1.56

8 DC motors with wheels 4 $ 7.01 $ 28.04

9 Raspberry Pi 4 4GB 1 $ 55.00 $ 55.00

10 Raspberry Pi 3B+ 2 $35.00 $ 70.00

11 Raspberry Pi Cameras 2 $ 24.99 $ 49.98

12 8 mp camera 1 $ 30.00 $ 30.00

13 Homemade battery pack 1 $ 33.00 $ 33.00

14 Front wheels 4 $ 1.00 $ 4.00

Total Cost $ 366.43

Application

● Low latency video streaming tool (MJPEG format)
● Socket server backend
● Database for user profiles and game statistics
● Server from ISU for hosting socket server and database

19

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context
Area Description Examples

Public health,
safety, and
welfare

The product must provide entertainment to
the general public and possibly an outlet for
stress for participants and audiences.

Reducing stress impacts the
wellbeing of individuals in a wealth
of ways.

Global,
cultural, and
social

Competitions and games play a role in most
communities and provide a realm in which
unrelated groups can be introduced to each
other.

Games can bring people together
from anywhere, especially when
available over the internet.

Environmental What environmental impact might your
project have? This can include indirect
effects, such as deforestation or unsustainable
practices related to materials manufacture or
procurement.
Our project should have little to no
environmental effect. If any, slightly
increasing the demand for rare earth metals
used in computer hardware and electricity.

Increasing/decreasing energy usage
from nonrenewable sources,
increasing/decreasing
usage/production of non-recyclable
materials

Economic What economic impact might your project
have? This can include the financial viability
of your product within your team or company,
cost to consumers, or broader economic
effects on communities, markets, nations, and
other groups.

Product needs to remain affordable
for target users, product creates or
diminishes opportunities for
economic advancement, high
development cost creates risk for
organization

20

4.1.2 User Needs

Children need activities that can tie their curiosities to productive fields of work so that they can explore
technology as an industry for their future careers.

Stressed individuals need something as a distraction to divert their mind from the stress so that the next
time they get back to work they have a fresh mind and high productivity.

4.1.3 Prior Work/Solutions

When exploring prior solutions, the technology used for driving modern drones with onboard cameras
meets the solutions our apps are being designed for. From the camera on the drone, video feed is displayed
on the controller or phone being used and controls are sent to the drone continuously.

RC cars exist in a similar capacity to what we need for the soccer-inspired game. They can be controlled in
a similar capacity to our use case and can, in some cases, stream video feed.

Advantages (Drone Controller)

● Supports the functionalities we desire for direct interaction with our robots
● Is not limited by wifi connection

Shortcomings (Drone Controller)

● Most are not open source
● Does not support the streaming video over wifi
● User interface doesn’t support 3rd party viewing
● Many don’t support the UI customizations we would require

Advantages (RC Cars)

● Can drive and interface with RC controllers
● Are light and quick
● Can stream video in some case

Shortcomings (RC Cars)

● Cannot interface with wifi
● Do not have the interfaces necessary to apply machine learning
● Often does not have the mass to be as effective in a competition as we require
● Most often do not have the capacity to turn in a small enough radius

Below is a list of pros and cons of our target solution compared to all other related products/systems.

Pros

● Our product is a unique combination of the products available
● Our product is an interpretation of an existing game (rocket league) but in a real world context
● Our product could enable a unique learning environment in the fields of robotics
● Our product is sturdy enough to not break for repeated use
● Our product involved machine learning for a real life CPU opponent

21

● Our product will not require the user to be in the same room as the arena

Cons

● Rocket League, RC cars, and controllers with video capabilities currently exist
● Our product is more expensive than existing rc cars in the market

4.1.4 Technical Complexity

1. The design consists of multiple components/subsystems that each utilize distinct scientific,
mathematical, or engineering principles

Our product will be a combination of robotics and full stack application development that requires
the following components:

● Multi-platform application
○ Capacity to display low latency video feed
○ UI/UX design
○ Robot driving game control interface

● Socket server
○ Coordinate players and robots
○ Handle account/statistic interactions
○ Hosted on and ISU server
○ Handle login validation
○ Multithreaded to optimize performance at bottlenecks
○ (Object detection data will likely be used to drive bots from here)

● Database
○ SQL
○ Store account information
○ Store game statistics
○ Calculate rankings

● Arena
○ Stream video of entire game
○ Camera with object detection

● Robots
○ Stream video
○ Driveable with controls streamed over wifi
○ Agile enough to keep game speed competitive

2. The problem scope contains multiple challenging requirements that match or exceed current
solutions or industry standards.

Complex components

● Machine Learning- Since our project has an option of a single user playing the game with
the CPU, as well as the 2 robots playing autonomously using the CPU, we needed to train
a machine learning model so that the CPU can maneuver in such a manner as to give a
decent competition to the user. We are utilizing visual object detection using the arena

22

cameras, which will implement the ML model that we have created to detect the robots
and the game ball.

● Autonomous Play- The ML model provides the location of the robots and game ball,
which are used as inputs to the function that will ultimately provide the direction for the
robots to drive autonomously.

● Power Supply- Our design consists of various components, all of which have a desired
power dissipation which we couldn't supply from the design and the concepts we decided
to implement. Adding more power could only be done by two methods, either we add the
power supply which will increase the cost of the design or start from square one, redesign
the robot and arena again and look for the components that run on less power which
might be expensive or difficult to find.

● Design- Designing the robot and arena turned out to be a lot more difficult and time
consuming than we originally thought. The robot had to be strong so that it doesn’t take
any damage in case of collision with the other robot or the structure of the arena. We
wanted our project to be highly mobile due to its structure size, therefore the robot has to
be small and lightweight so that it's easy to carry. The robot also has to be “nice and
beautiful” all of which becomes difficult when we try to add more strength to it with a
restrained budget. Similar complexity was with the arena as well. Since the arena was
sized to be 8’ x 4’ x 5’, its structure takes a lot of space and is difficult to carry, therefore
we needed to come up with something that's strong enough to bear the collision force of
robots and has good mobility.

● Socket server - Our server will need to receive connections from multiple different
devices: users on the app, arena camera, and robots. The server will coordinate which
robots get connected to their driver and ensure the correct driving commands go from the
user to the robots. The server will also set up which IP’s are streaming video for the app
to connect to over HTTP protocol.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

1. Multi-platform framework: Flutter/Dart
● Single platform products have only a limited audience
● Our team will more effectively be able to test our products by being able to reach every

device our team members possess.
● Targeting a single device would confine our team in ways that could limit product down

the line.
● Flutter apps can be compiled to a wealth of the common device platforms with a single

code base.
● Dart is an object oriented programming language which suits the strengths of our team

2. What computer(microcontroller) to use for the bots: Raspberry Pi
● Ability to interface with wifi
● Capacity to stream low latency video
● Compatible and affordable video cameras available
● Raspberry pi’s have a variety of models available

23

● They are accessible and do not require the learning of a new programming language like
arduino

● Capacity for embedded machine learning
3. Decide whether we are using embedded machine learning or doing the computation on a server.

● The calculations need to be fast enough to be useful
● Calculations on the server add latency
● Calculations on the microcontroller may be limited for space or compute power

4. Database: SQL (MySQL or SQL Server)
● Our data is going to be very structured which lends to SQL in strengths
● NoSQL is good for highly connected data which our data will not be
● Our data should be easily organized into a database schema which is best suited for SQL
● Additionally it can be hosted on the server we have from ISU which is more suitable than

cloud solutions for our project’s duration.

4.2.2 Ideation

For what computer to use we used the lotus blossom technique.

Microcontroller options considered:

1. Arduino Uno
2. Arduino Nano 33 BLE Sense s
3. Raspberry Pi Zero WH
4. Raspberry Pi 3B+
5. Raspberry Pi 4

Frontend options:

1. React Native
2. Angular
3. Flutter
4. Native android app via Android Studio
5. Electron

4.2.3 Decision-Making and Trade-Off

We looked at the official Raspberry Pi and Arduino sites in order to see hardware specification and whether
they aligned without goals. We didn’t decide on Arduino because no one has used Arduinos which leaves
the raspberry pis. We then discussed machine learning capabilities and decided that the raspberry pi 4 has
enough ram for intensive computation that comes with ML.

React Native Angular Flutter Android Native App Electron

Supports android X X X X

Supports iOS X X

Supports desktop X X X

24

Supports web X X

Supports devices we have
access

X X X X

Pure OOP X X

Familiar to team members X X

Results 4 3 6 3 3

4.3 PROPOSED DESIGN

On the application side of our project, we have implemented the skeleton of an application with basic
routing between pages. We have also implemented the baseline for how we can display a video stream over
HTTP that is MJPEG format. The application has been tested and works without customization on
Windows Desktop and an android emulator.

On the Hardware side of the project we have implemented and tested the different power supplies to
determine suitable for the needs of the project. Also we have tested the field of view of the designated arena
camera to determine the course of action when it comes to the object detection model.

25

4.3.1 Design Visual and Description

Below is the first prototype P.H.I.L.L.I.P. It is our team’s first prototype constructed of plywood, KNEX,
and electronic components. The design is simple but inclusive, where we could work from to build better
bots and improve features. The battery and motors on P.H.I.L.L.I.P. rated for 6 volts limited the speed. The
next prototype will have 12 volt motors and an 18 volt battery. Another downside is the exposed wheels,
which could cause unwanted behavior near other robots or objects.

P.H.I.L.L.I.P.

The next prototype will be made of pressed material found in surplus in the scrap of the electrical
engineering machine shop. By measuring the components on P.H.I.L.L.I.P and adding in the future
batteries and motors, a design can be formed. This design will be more enclosed, and have a more aesthetic
appearance. The upper half of the bot will be able to seperate allowing easy access to the breadboard and
components. A large flat roof is needed for symbols used by machine learning.

26

Next Prototype

27

Instead of teaching the machine learning model to recognize the physical robots, we decided to
instead teach the model to recognize the shapes shown above. Each robot will have two shapes on top of
them, which allows for the object detection model to differentiate between the two robots. The reason that
there are two shapes on top of each robot, instead of one, is because this allows for the model to determine
which direction the robot is facing. In order to use the object detection data to provide input to maneuver
the robots, we must have the ability to determine which way each robot is facing, in addition to their
locations. Because the object detection model is only able to provide the location of each object, a single
object would not be sufficient to determine which direction each robot is facing.

An example of our object detection model is shown below. In addition to training the model to
recognize the shapes shown above, we used a tennis ball to train the model for the game ball. Tennis balls
are inexpensive and easily replaced if they are lost, so that is why we chose them. For each object detected,
the model determines the bounding box around them (shown in green below). The model also calculates the
center of each object (shown by the red dot below), which is necessary in order to determine the location of
each robot and the ball during the gameplay.

28

We designed our arena with dimensions 8’ x 4’ x 5’. Since the area to be covered by the camera for video
analysis is too large, the camera must be placed very high which increases the amount of money needed to
be spent on the arena. The extra height creates the problem that the camera will not be able to detect
objects, so to mitigate this, we decided to use two cameras instead of one and merge the data collected from
them.The image below shows us the top view of the arena with two cameras placed in the center of two
halves of the arena.

The image below shows the view when standing from behind to the goal of the arena. The goal will have a
structure similar to a draw bridge so that every time the ball goes in, it can be rolled out to reset the game.
We also made sure that the size of the goal post is big enough for the ball to go in even if there is a little
bounce but it's not too big so that the robot can enter and mislead the scoring system. with the lightly
shaded area representing the walls which we created using military grade canvas so that it’s not too hard
that can damage the robot and it’s not too soft that can be damaged by the robot.

29

HIGH LEVEL ARCHITECTURE DIAGRAM

Here is a high level drawing of the components involved in our project and how they interact. The
socket server will orchestrate the various interactions between the bots, app, database, and arena
camera. The cameras on the raspberry pi’s will broadcast the video feed over HTTP in MJPEG
format. The bots will send the host and port numbers to the server so that the user’s applications
can connect to the video feeds. The object detection data is also being planned to be sent to the
server so that it can be overlaid over the video feed from the arena cam in a helpful fashion for
users. Controls will be sent from the appropriate users to the correct bot for a given game.

30

4.3.2 Functionality

Describe how your design is intended to operate in its user and/or real-world context. This description can
be supplemented by a visual, such as a timeline, storyboard, or sketch.

How well does the current design satisfy functional and non-functional requirements?

4.3.3 Areas of Concern and Development

The final design of the robot isn’t finalized yet due to some errors and issues on the current design. Our
current design has an issue that it’s taking too much power that is very difficult to supply considering our
resources and specifications. Another concern we have is the camera we want to use doesn't have a good
frame rate which will affect the machine learning model and object detection. We are also concerned about
connecting the bot with our web application. We haven’t gotten the two to communicate and only have an
idea on how this can be done. Proving that a TCP connection can transfer data efficiently without packet
loss still hasn’t been done.

What are your immediate plans for developing the solution to address those concerns? What questions do
you have for clients, TAs, and faculty advisers?

We are still looking for potential solutions to these problems. As for now, we are looking for other cameras
that have a better video quality and also fit our budget. We are also looking for some industry-grade battery
that fits our budget but can supply more power to solve the issue of lack of power in the project. On the
TCP connection we will begin implementing it in the upcoming semester. We have two students in
CPRE489 who deal with sending TCP packets. We know the technology and understand it can be used for
sending video feeds, but we haven’t done it with our robot. We also have other solutions ready if this does
not work such as using other forms of data transfer. We will be discussing these problems with the experts
and our advisor to check if they have a better suggestion that would be useful in our case.

4.4 TECHNOLOGY CONSIDERATIONS

Different computer to place on the robot:

1. Arduino Mega - No one has used arduinos
2. Arduino Uno - No one has used arduinos
3. Arduino Nano 33 BLE Sense - No one has used arduinos
4. Raspberry Pi Zero WH - Works, but does not meet our computation/interfacing requirements
5. Raspberry Pi 3B+ - Works, but does not have the RAM requirements we may need for ML
6. Raspberry Pi 4

The Arduinos are microcontrollers and do not have the processing power for machine learning. The
Raspberry Pi pico overheats and is also a microcontroller.

The Raspberry Pi 4 is expensive, but will work well.

The Raspberry Pi 3B+ has pins for I/O connections to easily test and should be powerful enough for
machine learning. When we understand the processing power needed and power consumption, it may be

31

feasible to switch to either the cheaper zero or more expensive 4.

Different databases:

1. Firebase- Google’s cloud no-sql database
2. SQL server- This server was provided and would store our data
3. no SQL server- This was not provided, but would allow us to grab data in a different way

Firebase would allow us to store lots of data in the cloud, this would mean that if our server were ever to be
down we wouldn’t ever lose our data. The only way the data would be lost is if Google's service went
down. However, this platform costs money which would require more money from our budget to maintain.

Firebase also is easily implemented via Flutter and would be easily implemented by our devs.

SQL servers were provided which would provide zero maintaining cost. Also, all devs have used SQL
queries and a relational database would be reasonable for our database.

SQL servers are more complex and the queries can get complex based on your structure. Configuring a
SQL server would be difficult with a different IDE and a different language from what the devs are used to

No SQL server is simpler to query as they look like JSON objects. Also, our project does not require much
relational database needs.

No SQL servers were not provided and all the devs would need to learn how to query. There are also a
plentiful amount of No SQL databases to choose from.

4.5 DESIGN ANALYSIS

– Did your proposed design from 3.3 work? Why or why not?

Yes, our design from the hardware and software side are flushed out. The only thing that needs to be
worked on are the details and problems that will arise while implementing the project.

– What are your observations, thoughts, and ideas to modify or iterate over the design?

Some parts of the document are more flushed out than others. For example, we have details on how we
want to implement each part of our software side, but we haven’t figured out how to connect every piece
yet. We also have a plan to communicate with the bot, but we haven’t implemented this yet. These will be
more flushed out as we start implementing it and as problems arise with our solution. On the hardware side
we have a plan of how we want the arena to look like and where everything should go, but physically it
isn’t there yet. The details on where things should go will be modified as we start creating the arena.

32

4.6 DESIGN PLAN

33

5 Testing
Our testing plan is split between hardware and software. Software side we plan to use unit testing that’s
connected to our CI/CD pipeline to ensure that our software continues to meet our requirements. Some
unique challenges are having multi platform support. Thus, it’s hard to ensure that all our platforms have
fluid UI design.

Hardware plans to test system requirements using a trial approach. This means that we will have number
requirements that will be met by having multiple trials and average out the trials. This will allow for us to
take out any outliers and allow us to show graphically that our system meets requirements.

5.1 UNIT TESTING

Our main units to be tested are the widgets that make up our Flutter application and the helper functions
that run on our server. Flutter provides its own tools for unit testing, and we can also use Docker to
automatically execute our unit tests, as well CI/CD in git. We will use unit tests on the functions we create
to alter or interpret our data within a closed environment. When it comes to testing our hardware
components, we will feed the motors hardcoded movement commands to see how the bot reacts to a given
input value. For the bump sensors we will use print() methods to display on the console when bumps are
being detected to check if it matches to when the bumps are actually happening.

5.2 INTERFACE TESTING

Our backend will be tested using unit testing. We will do this by testing whether our api calls return the
appropriate values from our database. This can be done by simply doing an api call and comparing those
values to the assumed values that it should return. For example, we tested the goals made by a user by
comparing the api call and how many goals the user has in the database.

Hardware has tested the speed of the robot. Hardware did this by testing how fast the motors registered
over a 100m distance. We then did multiple trials, took our outliers, and averaged the numbers. This gave
us appropriate numbers that we were happy with.

34

5.3 INTEGRATION TESTING

Critical parts to integrate is the connection between the camera feed and our website. This is critical as the
user should be able to see what the robot is seeing and move accordingly. We will test this by seeing if our
network packets are being transmitted correctly and whether there are any packet drops. We can use tools
like ping to see if the Raspberry Pi has a stable connection for this.

Another critical part would be the camera able to identify important objects in the arena: robots, ball, and
the goal. This is critical as our game requires these be identifiable. We will test certain parts of our machine
learning to see if it can identify the objects and at what confidence. We will also test if it can continue to do
this while the objects are moving at their max speeds.

5.4 SYSTEM TESTING

Since our robots will be operating under predefined circumstances and rules, testing the system as a whole
can be done simply by setting up the game in the scenario that we want to test and observing if everything
proceeds in an acceptable manner. For example just by giving the robot set of input commands that equates
to something as simple as “proceed forward at maximum speed for 2 seconds” we can test that the
connection between the robot and the controller is working, the robot can properly decode the “move
forward” instruction, the motors respond to that instruction by actually moving forward, the maximum
speed is an appropriate speed(as defined under project requirements) for our gameplay, and the robot stops
when expected to, all at once. This can be done either with our physical prototype robot or on an online
simulator depending on what’s more convenient for what is currently being tested. When doing these tests
it is important that we cover every possible scenario that can occur throughout playing the game and that
we are thorough enough to ensure that the desired outcome is reliably achieved and not just coincidentally
working on the few times it was tested.

5.5 REGRESSION TESTING

During this section, we will be describing how we plan to handle new features to our project that will be
building on old ones. Our main tool for handling this kind of regression testing will be through the use of
Git .

Git allows each individual programmer to create a new branch whenever they begin a new task. That
branch can then pull existing code from the master branch and create a new feature or fix a bug in existing
code. By having a new branch created, the master branch is unaffected by the new code while it’s being
worked on the new branch. Everything will continue to be available in its previous state since no new code
will be pushed to the master until its completion. If that new branch accidentally breaks any of the features
with their changes. Git will allow us to set up automated tests such as CI/CD pipeline that runs when
merging the new branch back into master. This will catch any conflicts of code that broke any features that
were already in place.

In the event that a game-breaking bug goes undetected to the master branch, Git allows for the entire
branch to be reverted to any previous commits. This will delete any new work created from the last commit
but will allow for the branch to return to the previous state.

Finally, in the event two users make different changes to the same code, Git will not allow for a full merge
to that branch until the conflicts are resolved. This means it will catch scenarios where the code being
worked on by one user can be tested and can pass on their branch and another user’s code can also work

35

perfectly when tested on their branch. However, upon pushing that code to the master branch the code will
fail in conjunction because of a dependency that no longer exists in the format expected once the other
user’s work is considered on the same branch.

By using Git, if a new feature or patch would break an existing feature, the option to choose the better
version between the existing code and the new code. This allows the users to prioritize the versions where
the core gameplay mechanics are intact at the expense of extra features regardless of which version is
newer.

5.6 ACCEPTANCE TESTING

This section will describe how functional and nonfunctional requirements are being met. As well as how
we plan to involve our client/advisor in our acceptance testing. With our end product being designed to be
played as a game, it would be best for many of our functional and nonfunctional requirements to be
measured by third party input. In order to test our ease of usability and UI/UX requirements, we would be
required to see how well end users learn the game controls without assistance. Since our team will not be
around every time to teach how to play the game.

This can be measured either in a guided way by timing and observing how long it takes an end user to learn
the game mechanics, and/or by asking the user about their experience with the controls and interfaces via
survey. This data can be collected via survey. Additionally, nonfunctional requirements such as the aesthetic
appeal of the bots and application can be inquired about in the survey to see how our product stands up to
meeting aesthetic appeal to end users.

Our client can be involved in the acceptance testing by playing the game, driving the bots, interacting with
our application, and providing feedback through each testing phase to help us iron out details before
displaying it to all end users. Our acceptance testing should take place over several demos with our client
and/or alpha test users so that we can improve our end product with each iteration of feedback.

5.7 RESULTS

During this section, we will be explaining how during our testing process we will measure our compliance
with the requirements. We can ensure compliance with the requirements by testing our qualitative
requirements to meet those expected projections that our client/advisor and team members have come up
with during our design phase.

36

Figure 5.7.1 Testing Process on Code Level

Figure 5.7.1 shows how our code testing process will be completed by using Git as described in section 5.5.
We will be pushing code from separate branches onto the master branch. Before it can be applied to the
master branch, it must pass the CI/CD pipeline tests that show that there are no errors or conflicts between
commits before being merged into the existing code on the master branch. In order to test for UI appeal and
ease of use, we will be using alpha users to describe their experience while learning the game and how well
the UI was laid out.

Figure 5.7.2 Testing Hardware

Figure 5.7.2 shows the hardware testing process. The bots will be tested via how long it takes for them to
reach 10m. This will then be compared to the other values to see if the average values are within our
requirements. The recording of this data can be done via an excel spreadsheet to display a trendline and see
if any test falls too far below the accepted values on multiple runs.

37

6 Implementation
App-Dev Team

● Database
○ Create a database (SQL Server or MySQL) on our ISU server
○ Create a database schema for profiles and game statistics
○ Document connection details for the database

● Server
○ Ensure our ISU server has proper software installed for running our server software
○ Implement socket server
○ Configure connection to database
○ Create endpoints for socket connections with user app and raspberry pi’s
○ Document connection details for the socket server

● Flutter App
○ Implement user authentication
○ Implement socket connection to server
○ Create page for profile viewing and editing
○ Create page for statistics and rankings viewing and querying
○ Create game setup page
○ Create game spectator viewing page
○ Create game play page with control interface for user
○ Customize app for different platforms as needed

Hardware Team

● Bots
○ Double check prototype plan with P.H.I.L.L.I.P components sizes
○ Order components needed (motors,pi,L298N,Camera,Batteries) for second prototype
○ Build composite shell in machine shop using scrap material
○ Add electronic components
○ Glue sections together
○ Modify and repeat above steps for another bot.
○ (Optional) Add additional features (headlights,speaker,turn signals)

● Arena
○ Double check plan dimensions with bot plans and check order quantity
○ Order / buy parts needed for the arena
○ Build arena frame
○ Add canvas walls
○ Add arena cameras and power supplies
○ Adjust arena cameras’ positions
○ (Optional) Add additional features (Lights, drawbridge, score display, jumbotron)

Dependencies

38

● Video and controls need both teams to collaborate

-Create an existing prototype

-Test our current speeds of the prototype

-Create an arena that suits the need of the game

7 Professionalism
This discussion is with respect to the paper titled “Contextualizing Professionalism in Capstone Projects
Using the IDEALS Professional Responsibility Assessment”, International Journal of Engineering
Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 AREAS OF RESPONSIBILITY

IEEE Code of Ethics:

https://www.ieee.org/about/corporate/governance/p7-8.html

Area of Responsibility IEEE Code of Ethics

WORK COMPETENCE To maintain and improve technical competence.

FINANCIAL RESPONSIBILITY Honest estimates, reject bribery, give proper credit
to the contribution of others

COMMUNICATION HONESTY Protect others' privacy, and disclose conflicts to
affected parties.

HEALTH, SAFETY, WELL-BEING To hold paramount the safety, health, and welfare
of the public. Treat all fairly

PROPERTY OWNERSHIP To accept criticism, correct errors, and give credit
to whom it is due.

SUSTAINABILITY To strive to comply with sustainable development
practices. Reveal factors that might endanger the
environment without delay.

SOCIAL RESPONSIBILITY Improve the understanding of society about
emerging technologies

39

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

APPLICATION TO PROJECT TEAM PERFORMANCE

WORK

COMPETENCE

THE EE STUDENTS ARE MAINLY FOCUSED ON

THE HARDWARE SIDE OF THE PROJECT WHILE

THE CPRE/SE STUDENTS ARE MAINLY

FOCUSED ON THE SOFTWARE SIDE.

HIGH: THE SEPARATE TEAMS MAKE INDIVIDUAL

PROGRESS AS A TEAM AND MEET UP WEEKLY TO

FURTHER THE DEVELOPMENT OF THE PROJECT.

FINANCIAL

RESPONSIBILITY

DELIBERATIONS ARE MADE AS A TEAM TO

DETERMINE THE BUDGET FOR EACH ASPECT OF

THE PROJECT.

HIGH: EVERY COMPONENT IS RESEARCHED TO FIND

THE BEST DEAL FOR THE DESIRED PERFORMANCE.

COMMUNICATION

HONESTY

WEEKLY REPORTS ARE SUBMITTED TO THE

ADVISOR, WHILE AN OPEN FORM OF

COMMUNICATION IS PRESENT FOR REAL TIME

COLLABORATION BETWEEN THE PROJECT TEAM

AS A WHOLE AND THE INDIVIDUAL TEAMS.

MEDIUM: WEEKLY FORMAL REPORTS ARE SUBMITTED

TO DR. ROVER AND THE TEAM MEMBERS UTILIZE

SLACK AND DISCORD FOR INFORMAL COMMUNICATION.
SOME WEEKS WE HAVE ISSUES GETTING EVERYBODY

TO REPORT THEIR PROGRESS IN A TIMELY MANNER.

HEALTH, SAFETY,
WELL-BEING

OUR PROJECT HAS LOTS OF PHYSICAL

COMPONENTS SO WE MUST CONSIDER

POTENTIAL SAFETY HAZARDS WHENEVER WE

ARE MAKING DESIGN DECISIONS.

HIGH: WE’VE ALREADY DECIDED ON A LIMIT FOR THE

ROBOT’S MAXIMUM SPEED. WE JUST NEED TO BE

MINDFUL OF POTENTIAL DANGERS POSED BY THE

MATERIALS WE SELECT TO CONSTRUCT OUR PROJECT

OUT OF, ESPECIALLY IF THEY WERE TO BECOME

DAMAGED.

PROPERTY

OWNERSHIP

WE HAVE TO RESPECT EACH TEAM MEMBER’S

IDEAS FOR OUR BRAINSTORMING SESSIONS, AS

WELL AS ACKNOWLEDGE THE CREATORS OF

THE GAME OUR PROJECT IS BASED UPON

(ROCKET LEAGUE).

MEDIUM: WE SHARE OUR IDEAS WITH EACH OTHER,
AND WE RESPECT EACH PERSON’S INPUT AS PART OF

THE DECISION MAKING PROCESS. WE ARE BASING OUR

GAME OFF OF THE VIDEO GAME ROCKET LEAGUE

WITHOUT CONTACTING THEM, WHICH MAY BE

DISRESPECTFUL TOWARDS THEIR CREATORS.

SUSTAINABILITY MINIMIZE THE AMOUNT THAT COULD END UP

AS WASTE.
HIGH: MOST OF THE COMPONENTS CAN BE

REPURPOSED AND SCAVENGED FROM THE PROJECT

EASILY. WE ARE TRYING TO GET OLD ELECTRONICS

AND MATERIALS TO USE FOR OUR PROJECT, SO WE

DON’T HAVE TO USE NEW MATERIALS.

SOCIAL

RESPONSIBILITY

WE ARE MAKING A GAME THAT WILL BRING

JOY TO THE USERS, AND SHOW DR. ROVER

THAT EMBEDDED MACHINE LEARNING CAN BE

A POTENTIAL COURSE FOR STUDENTS AT ISU.

MEDIUM: WE HAVE NOT BEEN FOCUSING ON OUR

SOCIAL RESPONSIBILITY, AND WE HAVE INSTEAD BEEN

MAINLY FOCUSING ON THE TECHNICAL ASPECTS OF THE

GAME.

40

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Being that our project is primarily designed for recreation and not financed by a company, financial
responsibility is key to the success of our project. Financial responsibility is also an area where we have
exercised a high degree of proficiency.

Currently, our project has no external financial support outside of the provided budget of $ 500-$ 600
provided by this being a senior design project. While Dr. Rover has offered to support us within reason if
that budget is not sufficient, we still are planning only within the already allotted financial constraint. Every
decision we have made as a team has been made considering the financial implications of it. When
considering which areas our project can grow in with the most potential, the software space is favored as
open source software is available for most solutions and otherwise, we can create what we need while
hardware has a material cost in most situations. Many costly materials we have needed for the prototyping
phases of our project have been borrowed from the ETG rather than purchasing what may not be the best
fit. This allows us to experiment and determine what materials (raspberry pi’s, servos, etc.) will best suit
our project within our budget constraints.

41

8 Closing Material

8.1 DISCUSSION

We have been working this semester to design both the hardware and software portions of our
Robot League game. Before we could begin with the design, we had to decide upon the rules and come up
with the entire structure of the game. After we reached a decision on the rules and composition, we had to
design the robots, arena, and the application.

While we still have multiple components of our project to complete, we are comfortable with the
progress that we have made up to this point. All of our requirements have been addressed, whether that be
by satisfying them, coming up with solutions to requirements that are not met, or modifying requirements
that we decided were not sensible.

8.2 CONCLUSION

In order to design the robots, we started early on in the semester with a prototype to determine if
the materials we already had would be sufficient. We found that the battery pack we had, which had a
voltage of 7.5V and capacity of 2 Amp-hours, was not sufficient to power the motors. The motors required
a higher voltage, and they also operated at a much higher RPM than we need for our robots to travel at the
speed requirements we chose.

For our arena design, we have not really made any significant changes than what we first decided
for the layout. It will be approximately 4 feet wide, 8 feet long, and 5 feet tall. We originally planned to
have the arena taller, but decided that using 2 separate overhead cameras would allow for them to be closer
to the ground.

For the machine learning portions of the project, we had to make some changes to what we
originally planned. While we originally decided to implement machine learning for both object detection
and autonomous driving, we had to remove the machine learning requirement for autonomous driving. We
realized that we would not have enough time to create such a complex machine learning model, and did not
want to risk not completing the project after allocating most of our time to one aspect. We also originally
planned to train the machine learning models ourselves using transfer learning and adapting a pre-built
model such as the ssd_mobilenet_cpu_coco model, but we were unable to accomplish this due to
processing constraints for the computer devices we were using.

For the software side, we set about this semester to learn how to use the flutter IDE. None of us
had used this software before but during our research it checked off many of our boxes. We spent much of
our time making sure we understood the software while continuing to design basic outlines of screens and
refine our criteria needed for different target users.We wanted to make our software available for multiple
platforms and create something that’s aesthetically pleasing. While Flutter provided us with a useful
platform to build an application that could handle these requirements, the fact that we all had to learn a
brand new technology was our biggest hurdle this semester and consumed the vast majority of our time,
leaving little room to work on much else as our design decisions are closely tied to our ability to understand
Flutter’s capabilities. This was mostly unavoidable, but the time spent learning Flutter this semester should
put us in a better position to succeed when dealing with it in the future implementation phase.

42

8.3 REFERENCES

[1] “Automl Vision Object Detection Documentation | google cloud,” Google.
[Online]. Available:
https://cloud.google.com/vision/automl/object-detection/docs., [Accessed:
06-Dec-2021].

[2] B. Peabody, “Server-side I/O performance: Node vs. PHP vs. Java vs. go,”
Toptal Engineering Blog, 11-May-2017. [Online]. Available:
https://www.toptal.com/back-end/server-side-io-performance-node-php-java-go,
[Accessed: 06-Dec-2021].

[3] “Flutter documentation,” Flutter. [Online]. Available: https://docs.flutter.dev/,
[Accessed: 06-Dec-2021].

[4] “Flutter_mjpeg: Flutter Package,” Dart packages, 11-Jun-2021. [Online].
Available: https://pub.dev/packages/flutter_mjpeg, [Accessed: 06-Dec-2021].

[5] N20 Electric Mini Micro DC geared motors 3v 6v 12v low speed 15 600rpm
in DC motor with mounting bracket wheel tire for DIY Toys: DC motor: -
aliexpress,” aliexpress.com. [Online]. Available:
https://www.aliexpress.com/item/4000125484788.html?spm=a2g0o.detail.100002
3.9.532c2e09BGMML6, [Accessed: 06-Dec-2021].

[6] “Object detection : Tensorflow Lite,” TensorFlow. [Online]. Available:
https://www.tensorflow.org/lite/examples/object_detection/overview, [Accessed:
06-Dec-2021].

[7] “Raspberry pi documentation,” Raspberry Pi. [Online]. Available:
https://www.raspberrypi.com/documentation/, [Accessed: 06-Dec-2021].

[8] V. Q. T. (vuquangtrong@gmail.com), “Camera live streaming using Mjpeg
format,” Code Inside Out. [Online]. Available:
https://www.codeinsideout.com/blog/pi/stream-picamera-mjpeg/, [Accessed:
06-Dec-2021].

43

8.4 APPENDICES

Table 1 is a data sheet of potential motors to use for the next prototype. These brushed DC motors operate
at 12 volts and include an attached wheel. Based on the RPM, the 600 RPM unloaded is the most likely
candidate.

(Table 1 - Motor comparison)

Table 2 is a circuit schematic for the raspberry pi 3B+. This schematic can be used as a guide especially
when connecting other components to the raspberry pi.

(Table 2 - Raspberry PI 3B+ schematic)

44

8.4.1 Team Contract
Team Members:

1) Brogden Worcester
2) Dalton Holdredge
3) Cheyenne Smith
4) David Quan

5) Tejas Agarwal
6) Joseph Holtkamp
7) Noah Brooks
8) Jordan Suby

Team Procedures
1. Day, time, and location (face-to-face or virtual) for regular team meetings:

Friday 10am, Wednesday morning 10am

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-mail,
phone, app, face-to-face):
Discord

3. Decision-making policy (e.g., consensus, majority vote):
Majority vote

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):
Scribe will type things during the meeting, or we will summarize at the end somehow

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:
We will probably have multiple meetings per week, so try to make at least one meeting a week
since we should be able to work that out. Communicate if you cannot make it to the meeting ahead
of time

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:
Everybody will do at least 12.5% of the total work for the project

3. Expected level of communication with other team members:
When we break up into groups, one person from each sub group will update the entire group what
was covered

4. Expected level of commitment to team decisions and tasks:
Everybody puts in their input for decisions and tasks, and participates in the meetings

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction, individual
component design, testing, etc.):
Team organizer: Cheyenne Smith
Client interaction - Brogden Worcester
Individual component design - Jordan Suby
Team leader hardware - Noah Brooks
Team leader software - Joseph Holtkamp
Document submitter/creator - Dalton Holdredge

45

Progress coordinator: David Quan
Finance officer: Tejas Agarwal

2. Strategies for supporting and guiding the work of all team members:
● Weekly updates from team members
● Reach out to team for help if stuck for over an hour
● Reach out to advisor for help if team is stuck for over a week

3. Strategies for recognizing the contributions of all team members:
We will have a running record of the tasks and accomplishments that everybody has done

Project Management Style
We will be implementing a Scrum style of project management.

Collaboration and Inclusion

Name Major Skills / useful experience / interests Weaknesses

Dalton Holdredge EE
(Semiconductor
Materials)

Arduino experience, willing to learn whatever
I need to in order to complete the project, I
know some C and Java, construction/building,
circuit design, and embedded system design

Not the best at coding

Noah Brooks E E Circuit and Embedded System design, also
willing to work for as long as it takes to finish
a project.

Not the best at coding

David Quan CPRE Strong worker and knows a lot of languages.
Can create good looking code and well
documented code. Able to understand system
design.

Poor at hardware and using
boards. Can learn and
willing to learn.

Joseph Holtkamp SE I work currently as a Full Stack Web
developer for the Iowa DNR. This gives me
experience with UI/UX, software architecture,
and general application development. I am
familiar with many programming languages
and love learning new ones.

I have poor time
management skills, I am
easily distracted, and I have
a lack of experience with
circuits/hardware.

Brogden Worcester EE + CPRE I have worked with arduino, C, Java, and
some python. I have done some android
studio but are more interested in website
development and Raspberry Pi.

Struggles to complete tasks
on time when my schedule is
full.

Tejas Agarwal EE I have experience with arduino, circuit design,
and mechanical aspects to build a robot. I also
have a little experience of C and Java.

I am not great at coding and
have poor time management
skills. I get distracted with
other things quite easily

46

Cheyenne Smith CPRE Coding languages known: C, c++, c#, unity,
Android studio, java, linux, python. Can find
examples of something similar to code I’m
working on quickly. I Like learning new
things. Keep track of deadlines. Tries to have
everyone involved, likes to hear others
opinions and ideas. Have little experience
using pcb software. Programmed applications
for frontend work. Have converted code from
one language to another. Easy going nature.
Likes to joke but serious when need be. Steps
up when needed. Embedded systems work.
Worked with a pi before. Can read datasheets.
App design.

Struggles with attention span
when it comes to meetings
and/or lectures. Horrible
when it comes to making
circuits design. Struggles
with conflict ie arguments
that are non productive.

Jordan Suby CPRE My biggest strength is I can code for hours
without getting bored. Most of my experience
is in C or Java, but I am perfectly happy to
learn new things if the project calls for it. I do
have some past experience with CAD, but it
was long ago so it is very rusty.

I often write messy code at
first while I'm working out
the kinks and then try to go
back and clean it up later,
which can cause issues if I
run out of time to do so
before a deadline. I also tend
to struggle with providing
extensive documentation
because I get locked in on
getting my code to work.

1. Strategies for encouraging and support contributions and ideas from all team
members:
Consider all ideas, give thumbs up in the chat to make people feel good about
themselves

2. Procedures for identifying and resolving collaboration or inclusion issues (e.g.,
how will a team member inform the team that the team environment is obstructing
their opportunity or ability to contribute?)
If anyone has a conflict with another member, they can speak to them
individually.

Goal-Setting, Planning, and Execution

● Team goals for this semester:
○ Figure out what the project is going to be
○ Define interfaces between the hardware and software
○ Define the rules for the game

47

○ Everybody contributes as much as they can
○ Fluid communication between team members
○ Attend meetings regularly when you can

● Strategies for planning and assigning individual and team work:
Everybody plays to their strengths or volunteers for what they are interested in. If
you do not volunteer for tasks, you will be voluntold what to do.

● Strategies for keeping on task:
The team leader in the meeting can make sure to keep the meetings on task, and
talk with team members
Weekly meetings and updates, milestones, larger tasks will have more members.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?
Deduction of grade points, talk to see what is the problem to see if they need help.

2. What will your team do if the infractions continue?
Talk to Dr. Rover or instructors

a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.
1) _David Quan_______________________________________ DATE _____9/10/2021_____
2) _Tejas Agarwal_____________________________________ DATE _____9/10/2021_____
3) _Dalton Holdredge__________________________________ DATE _____9/10/2021_____
4) _Cheyenne Smith___________________________________ DATE _____9/10/2021_____
5)_ Brogden Worcester_________________________________ DATE _____9/10/2021_____
6)_ Joseph Holtkamp__________________________________ DATE _____9/10/2021_____
7)_ Jordan Suby______________________________________ DATE _____9/10/2021_____
8)_ Noah Brooks_____________________________________ DATE _____9/10/2021_____

48

